

Reg.	No.	:	 	 	 ••	•	••	= 1	• •		 • •		•		•
Name	е:		 	 ••											

Il Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, April 2022 (2018 Admission Onwards) MATHEMATICS

MAT 2C 07: Measure and Integration

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks.

- 1. Show that if $m^*(E) = 0$, then E is measurable.
- 2. Show that there exists an uncountable set with measure zero.
- 3. Give an example of a function which is Lebesque integrable but not Riemann integrable.
- 4. Prove that if f and g are integrable functions, then f + g is also integrable.
- 5. Define $L^p(\mu)$ and prove that if f, $g \in L^p(\mu)$ and a, b are constants, then af + bg $\in L^p(\mu)$.
- 6. Define integral of a measurable simple function with respect to a measure μ . (4×4=16)

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - I

- 7. a) Prove that every interval is measurable.
 - b) Prove that the class of all Lebesque measurable functions is a σ algebra.
 - c) Show that for any measurable function f and g. ess.sup. $(f + g) \le ess.sup.f + ess.sup.g$ and give an example of strict inequality.

K22P 0190

- 8. a) Construct a non-measurable set.
 - b) Let f be a measurable function and let f = g a.e, then prove that g is measurable.
- 9. a) State and prove Fatuous Lemma.
 - b) Show that $\int_{1}^{\infty} \frac{dx}{x} = \infty$.

Unit - II

- 10. a) State and prove Lebesque Dominated convergence theorem.
 - b) Let f be a bounded measurable function defined on the finite interval (a, b). Show that $\lim_{\beta\to\infty}\int\limits_{0}^{b}f(x)\sin\beta x\,dx=0$.
- 11. a) Let μ^* be an outer measure of H(R) and let S* denote the class of μ^* measurable sets. Then prove that S* is a σ ring and μ^* restricted to S* is a complete measure.
 - b) Define a σ finite measure. Show that if μ is a σ finite measure on R, then the extension $\overline{\mu}$ of μ to S* is also σ finite.
- 12. a) Show that Lebesque measure is a σ finite measure and complete.
 - b) If μ is a σ finite measure on a ring R, then prove that it has a unique extension to the σ ring S(R).

Unit - III

- 13. a) Let $[\![X,S,\mu]\!]$ be a measure space and f a non-negative measurable function. Then prove that $\phi(E)=\int_E f \ d\mu$ is a measure on the measurable space $[\![X,S]\!]$. Also prove that if $\int f \ d\mu < \infty$, then $\forall \in >0, \exists \ \delta > 0$ such that, if $A \in S$ and $\mu(A) < \delta$, then $\phi(A) < \delta$.
 - b) Define $L^{\infty}(X, \mu)$ and prove that $L^{\infty}(X, \mu)$ is a vector space over the real numbers.
- 14. a) State and prove Hölder's inequality.
 - b) State and prove Minkowski's inequality.
- 15. a) If $1 \le p \le \infty$ and $\{f_n\}$ is a sequence in $L^p(\mu)$ such that $\|f_n f_m\|_p \to 0$ as $m, n \to \infty$, then prove that there exists a function f and a subsequence $\{n_i\}$ such that $\lim f_{n_i} = f$ a.e. Also prove that $f \in L^p(\mu)$ and $\lim \|f_n f\|_p = 0$.
 - b) Prove that $L^{\infty}\left(\mu\right)$ is a complete metric space.

(4×16=